Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 115
1.
medRxiv ; 2024 May 03.
Article En | MEDLINE | ID: mdl-38746261

Background: Plasma phosphorylated-tau217 (p-tau217) has been shown to be one of the most accurate diagnostic markers for Alzheimer's disease (AD). No studies have compared the clinical performance of p-tau217 as assessed by the fully automated Lumipulse and SIMOA ALZpath p-tau217. Aim: To evaluate the diagnostic accuracy of Lumipulse and SIMOA plasma p-tau217 assays for AD. Methods: The study included 392 participants, 162 with AD, 70 with other neurodegenerative diseases (NDD) with CSF biomarkers and 160 healthy controls. Plasma p-tau217 levels were measured using the Lumipulse and ALZpath SIMOA assays. The ability of p-tau217 assessed by both techniques to discriminate AD from NDD and controls was investigated using ROC analyses. Results: Both techniques showed high internal consistency of p-tau217 with similar correlation with CSF p-tau181 levels. In head-to-head comparison, Lumipulse and SIMOA showed similar diagnostic accuracy for differentiating AD from NDD (area under the curve [AUC] 0.952, 95%CI 0.927-0.978 vs 0.955, 95%CI 0.928-0.982, respectively) and HC (AUC 0.938, 95%CI 0.910-0.966 and 0.937, 95% CI0.907-0.967 for both assays). Conclusions: This study demonstrated the high precision and diagnostic accuracy of p-tau217 for the clinical diagnosis of Alzheimer's disease using either fully automated or semi-automated techniques.

2.
Nat Med ; 2024 May 06.
Article En | MEDLINE | ID: mdl-38710950

This study aimed to evaluate the impact of APOE4 homozygosity on Alzheimer's disease (AD) by examining its clinical, pathological and biomarker changes to see whether APOE4 homozygotes constitute a distinct, genetically determined form of AD. Data from the National Alzheimer's Coordinating Center and five large cohorts with AD biomarkers were analyzed. The analysis included 3,297 individuals for the pathological study and 10,039 for the clinical study. Findings revealed that almost all APOE4 homozygotes exhibited AD pathology and had significantly higher levels of AD biomarkers from age 55 compared to APOE3 homozygotes. By age 65, nearly all had abnormal amyloid levels in cerebrospinal fluid, and 75% had positive amyloid scans, with the prevalence of these markers increasing with age, indicating near-full penetrance of AD biology in APOE4 homozygotes. The age of symptom onset was earlier in APOE4 homozygotes at 65.1, with a narrower 95% prediction interval than APOE3 homozygotes. The predictability of symptom onset and the sequence of biomarker changes in APOE4 homozygotes mirrored those in autosomal dominant AD and Down syndrome. However, in the dementia stage, there were no differences in amyloid or tau positron emission tomography across haplotypes, despite earlier clinical and biomarker changes. The study concludes that APOE4 homozygotes represent a genetic form of AD, suggesting the need for individualized prevention strategies, clinical trials and treatments.

3.
Nat Commun ; 15(1): 2908, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38575616

Staging amyloid-beta (Aß) pathophysiology according to the intensity of neurodegeneration could identify individuals at risk for cognitive decline in Alzheimer's disease (AD). In blood, phosphorylated tau (p-tau) associates with Aß pathophysiology but an AD-type neurodegeneration biomarker has been lacking. In this multicenter study (n = 1076), we show that brain-derived tau (BD-tau) in blood increases according to concomitant Aß ("A") and neurodegeneration ("N") abnormalities (determined using cerebrospinal fluid biomarkers); We used blood-based A/N biomarkers to profile the participants in this study; individuals with blood-based p-tau+/BD-tau+ profiles had the fastest cognitive decline and atrophy rates, irrespective of the baseline cognitive status. Furthermore, BD-tau showed no or much weaker correlations with age, renal function, other comorbidities/risk factors and self-identified race/ethnicity, compared with other blood biomarkers. Here we show that blood-based BD-tau is a biomarker for identifying Aß-positive individuals at risk of short-term cognitive decline and atrophy, with implications for clinical trials and implementation of anti-Aß therapies.


Alzheimer Disease , Cognitive Dysfunction , Humans , tau Proteins/cerebrospinal fluid , Amyloid beta-Peptides/metabolism , Brain/metabolism , Biomarkers/cerebrospinal fluid , Atrophy
4.
Lancet Healthy Longev ; 5(4): e276-e286, 2024 Apr.
Article En | MEDLINE | ID: mdl-38555920

BACKGROUND: Neuroimaging-based brain-age delta has been shown to be a mediator linking cardiovascular risk factors to cognitive function. We aimed to assess the mediating role of brain-age delta in the association between modifiable risk factors of dementia and longitudinal cognitive decline in middle-aged and older individuals who are asymptomatic, stratified by Alzheimer's disease pathology. We also explored whether the mediation effect is specific to cognitive domain. METHODS: In this cohort study, we included participants from the ALFA+ cohort aged between 45 years and 65 years who were cognitively unimpaired and who had available structural MRI, cerebrospinal fluid ß-amyloid (Aß)42 and Aß40 measurements obtained within 1 year of each other, modifiable risk factors assessment, and cognitive evaluation over 3 years. Participants were recruited from the Barcelonaßeta Brain Research Center (Barcelona, Spain). Included individuals underwent a first assessment between Oct 25, 2016, and Jan 28, 2020, and a follow-up cognitive assessment 3·28 (SD 0·27) years later. We computed brain-age delta and composites of different cognitive function domains (preclinical Alzheimer's cognitive composite [PACC], attention, executive function, episodic memory, visual processing, and language). We used partial least squares path modelling to explore mediation effects in the associations between modifiable risk factors (including cardiovascular, mental health, mood, metabolic or endocrine history, and alcohol use) and changes in cognitive composites. To assess the role of Alzheimer's disease pathology, we computed separate models for Aß-negative and Aß-positive individuals. FINDINGS: Of the 419 participants enrolled in ALFA+, 302 met our inclusion criteria, of which 108 participants were classified as Aß-positive and 194 as Aß-negative. In Aß-positive individuals, brain-age delta partially mediated (percent mediation proportion 15·73% [95% CI 14·22-16·66]) the association between modifiable risk factors and decline in overall cognition (across cognitive domains). Brain-age delta fully mediated (mediation proportion 28·03% [26·25-29·21]) the effect of modifiable risk factors on the PACC, wherein increased values for risk factors correlated with an older brain-age delta, and, consequently, an older brain-age delta was linked to greater PACC decline. This effect appears to be primarily driven by memory decline. Mediation was not significant in Aß-negative individuals (3·52% [0·072-4·17]) on PACC, although path coefficients were not significantly different from those in the Aß-positive group. INTERPRETATION: Our findings suggest that brain-age delta captures the association between modifiable risk factors and longitudinal cognitive decline in middle-aged and older people. In asymptomatic middle-aged and older individuals who are Aß-positive, the pathology might be the strongest driver of cognitive decline, whereas the effect of risk factors is smaller. Our results highlight the potential of brain-age delta as an objective outcome measure for preventive lifestyle interventions targeting cognitive decline. FUNDING: La Caixa Foundation, the TriBEKa Imaging Platform, and the Universities and Research Secretariat of the Catalan Government. TRANSLATION: For the Spanish translation of the abstract see Supplementary Materials section.


Alzheimer Disease , Cognitive Dysfunction , Humans , Middle Aged , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/epidemiology , Cohort Studies , Longitudinal Studies , Positron-Emission Tomography , Neuropsychological Tests , Neuroimaging , Brain/diagnostic imaging , Brain/metabolism , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/epidemiology , Risk Factors
5.
Ann Neurol ; 2024 Mar 11.
Article En | MEDLINE | ID: mdl-38466157

OBJECTIVE: Along with the known effects of stress on brain structure and inflammatory processes, increasing evidence suggest a role of chronic stress in the pathogenesis of Alzheimer's disease (AD). We investigated the association of accumulated stressful life events (SLEs) with AD pathologies, neuroinflammation, and gray matter (GM) volume among cognitively unimpaired (CU) individuals at heightened risk of AD. METHODS: This cross-sectional cohort study included 1,290 CU participants (aged 48-77) from the ALFA cohort with SLE, lumbar puncture (n = 393), and/or structural magnetic resonance imaging (n = 1,234) assessments. Using multiple regression analyses, we examined the associations of total SLEs with cerebrospinal fluid (1) phosphorylated (p)-tau181 and Aß1-42 /1-40 ratio, (2) interleukin 6 (IL-6), and (3) GM volumes voxel-wise. Further, we performed stratified and interaction analyses with sex, history of psychiatric disease, and evaluated SLEs during specific life periods. RESULTS: Within the whole sample, only childhood and midlife SLEs, but not total SLEs, were associated with AD pathophysiology and neuroinflammation. Among those with a history of psychiatric disease SLEs were associated with higher p-tau181 and IL-6. Participants with history of psychiatric disease and men, showed lower Aß1-42/1-40 with higher SLEs. Participants with history of psychiatric disease and women showed reduced GM volumes in somatic regions and prefrontal and limbic regions, respectively. INTERPRETATION: We did not find evidence supporting the association of total SLEs with AD, neuroinflammation, and atrophy pathways. Instead, the associations appear to be contingent on events occurring during early and midlife, sex and history of psychiatric disease. ANN NEUROL 2024.

6.
Brain Res ; 1830: 148806, 2024 May 01.
Article En | MEDLINE | ID: mdl-38365129

Abnormal deposition of Aß amyloid is an early neuropathological marker of Alzheimer's disease (AD), arising long ahead of clinical symptoms. Non-invasive measures of associated early neurofunctional changes, together with easily accessible behavioral readouts of these changes, could be of great clinical benefit. We pursued this aim by investigating large-scale cortical gradients of functional connectivity with functional MRI, which capture the hierarchical integration of cortical functions, together with acoustic-prosodic features from spontaneous speech, in cognitively unimpaired older adults with and without Aß positivity (total N = 188). We predicted distortions of the cortical hierarchy associated with prosodic changes in the Aß + group. Results confirmed substantially altered cortical hierarchies and less variability in these in the Aß + group, together with an increase in quantitative prosodic measures, which correlated with gradient variability as well as digit span test scores. Overall, these findings confirm that long before the clinical stage and objective cognitive impairment, increased risk of cognitive decline as indexed by Aß accumulation is marked by neurofunctional changes in the cortical hierarchy, which are related to automatically extractable speech patterns and alterations in working memory functions.


Alzheimer Disease , Cognitive Dysfunction , Humans , Aged , Amyloid beta-Peptides , Speech , Positron-Emission Tomography , Cognitive Dysfunction/psychology
7.
Alzheimers Dement ; 20(3): 2000-2015, 2024 Mar.
Article En | MEDLINE | ID: mdl-38183344

INTRODUCTION: Existing blood-based biomarkers for Alzheimer's disease (AD) mainly focus on its pathological features. However, studies on blood-based biomarkers associated with other biological processes for a comprehensive evaluation of AD status are limited. METHODS: We developed a blood-based, multiplex biomarker assay for AD that measures the levels of 21 proteins involved in multiple biological pathways. We evaluated the assay's performance for classifying AD and indicating AD-related endophenotypes in three independent cohorts from Chinese or European-descent populations. RESULTS: The 21-protein assay accurately classified AD (area under the receiver operating characteristic curve [AUC] = 0.9407 to 0.9867) and mild cognitive impairment (MCI; AUC = 0.8434 to 0.8945) while also indicating brain amyloid pathology. Moreover, the assay simultaneously evaluated the changes of five biological processes in individuals and revealed the ethnic-specific dysregulations of biological processes upon AD progression. DISCUSSION: This study demonstrated the utility of a blood-based, multi-pathway biomarker assay for early screening and staging of AD, providing insights for patient stratification and precision medicine. HIGHLIGHTS: The authors developed a blood-based biomarker assay for Alzheimer's disease. The 21-protein assay classifies AD/MCI and indicates brain amyloid pathology. The 21-protein assay can simultaneously assess activities of five biological processes. Ethnic-specific dysregulations of biological processes in AD were revealed.


Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/pathology , Ethnicity , Biomarkers , Amyloid beta-Peptides , tau Proteins , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/pathology
8.
Alzheimers Dement ; 20(3): 1703-1715, 2024 Mar.
Article En | MEDLINE | ID: mdl-38088508

INTRODUCTION: In 2013, the ALzheimer's and FAmilies (ALFA) project was established to investigate pathophysiological changes in preclinical Alzheimer's disease (AD), and to foster research on early detection and preventive interventions. METHODS: We conducted a comprehensive genetic characterization of ALFA participants with respect to neurodegenerative/cerebrovascular diseases, AD biomarkers, brain endophenotypes, risk factors and aging biomarkers. We placed particular emphasis on amyloid/tau status and assessed gender differences. Multiple polygenic risk scores were computed to capture different aspects of genetic predisposition. We additionally compared AD risk in ALFA to that across the full disease spectrum from the Alzheimer's Disease Neuroimaging Initiative (ADNI). RESULTS: Results show that the ALFA project has been successful at establishing a cohort of cognitively unimpaired individuals at high genetic predisposition of AD. DISCUSSION: It is, therefore, well-suited to study early pathophysiological changes in the preclinical AD continuum. Highlights Prevalence of ε4 carriers in ALzheimer and FAmilies (ALFA) is higher than in the general European population The ALFA study is highly enriched in Alzheimer's disease (AD) genetic risk factors beyond APOE AD genetic profiles in ALFA are similar to clinical groups along the continuum ALFA has succeeded in establishing a cohort of cognitively unimpaired individuals at high genetic AD risk ALFA is well suited to study pathogenic events/early pathophysiological changes in AD.


Alzheimer Disease , Humans , Alzheimer Disease/pathology , Genetic Profile , Biomarkers , Genetic Predisposition to Disease , Amyloid beta-Peptides/genetics , tau Proteins/genetics
9.
Alzheimers Dement ; 20(2): 1239-1249, 2024 Feb.
Article En | MEDLINE | ID: mdl-37975513

INTRODUCTION: Detection of Alzheimer's disease (AD) pathophysiology among individuals with mild cognitive changes and those experiencing subjective cognitive decline (SCD) remains challenging. Plasma phosphorylated tau 217 (p-tau217) is one of the most promising of the emerging biomarkers for AD. However, accessible methods are limited. METHODS: We employed a novel p-tau217 immunoassay (University of Gothenburg [UGOT] p-tau217) in four independent cohorts (n = 308) including a cerebrospinal fluid (CSF) biomarker-classified cohort (Discovery), two cohorts consisting mostly of cognitively unimpaired (CU) and mild cognitively impaired (MCI) participants (MYHAT and Pittsburgh), and a population-based cohort of individuals with SCD (Barcelonaßeta Brain Research Center's Alzheimer's At-Risk Cohort [ß-AARC]). RESULTS: UGOT p-tau217 showed high accuracy (area under the curve [AUC] = 0.80-0.91) identifying amyloid beta (Aß) pathology, determined either by Aß positron emission tomography or CSF Aß42/40 ratio. In individuals experiencing SCD, UGOT p-tau217 showed high accuracy identifying those with a positive CSF Aß42/40 ratio (AUC = 0.91). DISCUSSION: UGOT p-tau217 can be an easily accessible and efficient way to screen and monitor patients with suspected AD pathophysiology, even in the early stages of the continuum.


Alzheimer Disease , Cognitive Dysfunction , Humans , Amyloid beta-Peptides/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Cognitive Dysfunction/cerebrospinal fluid , Positron-Emission Tomography , Brain , Biomarkers/cerebrospinal fluid
10.
Alzheimers Dement ; 20(1): 538-548, 2024 Jan.
Article En | MEDLINE | ID: mdl-37727082

INTRODUCTION: This study examined the relationship between blood-brain-barrier permeability (BBBp), measured by cerebrospinal fluid/serum albumin ratio (QAlb), and cognitive decline progression in a clinical cohort. METHODS: This prospective observational study included 334 participants from the BIODEGMAR cohort. Cognitive decline progression was defined as an increase in Global Deterioration Scale and/or Clinical Dementia Rating scores. Associations between BBBp, demographics, and clinical factors were explored. RESULTS: Male sex, diabetes mellitus, and cerebrovascular burden were associated with increased log-QAlb. Vascular cognitive impairment patients had the highest log-QAlb levels. Among the 273 participants with valid follow-up data, 154 (56.4%) showed cognitive decline progression. An 8% increase in the hazard of clinical worsening was observed for each 10% increase in log-QAlb. DISCUSSION: These results suggest that increased BBBp in individuals with cognitive decline may contribute to clinical worsening, pointing to potential targeted therapies. QAlb could be a useful biomarker for identifying patients with a worse prognosis.


Blood-Brain Barrier , Cognitive Dysfunction , Humans , Male , Longitudinal Studies , Brain , Permeability
11.
Alzheimers Dement ; 20(1): 483-493, 2024 Jan.
Article En | MEDLINE | ID: mdl-37690071

INTRODUCTION: We studied how biomarkers of reactive astrogliosis mediate the pathogenic cascade in the earliest Alzheimer's disease (AD) stages. METHODS: We performed path analysis on data from 384 cognitively unimpaired individuals from the ALzheimer and FAmilies (ALFA)+ study using structural equation modeling to quantify the relationships between biomarkers of reactive astrogliosis and the AD pathological cascade. RESULTS: Cerebrospinal fluid (CSF) amyloid beta (Aß)42/40 was associated with Aß aggregation on positron emission tomography (PET) and with CSF p-tau181 , which was in turn directly associated with CSF neurofilament light (NfL). Plasma glial fibrillary acidic protein (GFAP) mediated the relationship between CSF Aß42/40 and Aß-PET, and CSF YKL-40 partly explained the association between Aß-PET, p-tau181 , and NfL. DISCUSSION: Our results suggest that reactive astrogliosis, as indicated by different fluid biomarkers, influences the pathogenic cascade during the preclinical stage of AD. While plasma GFAP mediates the early association between soluble and insoluble Aß, CSF YKL-40 mediates the latter association between Aß and downstream Aß-induced tau pathology and tau-induced neuronal injury. HIGHLIGHTS: Lower CSF Aß42/40 was directly linked to higher plasma GFAP concentrations. Plasma GFAP partially explained the relationship between soluble Aß and insoluble Aß. CSF YKL-40 mediated Aß-induced tau phosphorylation and tau-induced neuronal injury.


Alzheimer Disease , Humans , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Astrocytes/metabolism , Biomarkers/cerebrospinal fluid , Chitinase-3-Like Protein 1 , Glial Fibrillary Acidic Protein/metabolism , Gliosis/pathology , Inflammation , Intermediate Filaments/metabolism , Intermediate Filaments/pathology , tau Proteins/cerebrospinal fluid
12.
J Sleep Res ; : e14108, 2023 Nov 30.
Article En | MEDLINE | ID: mdl-38035770

Sleep disturbances are prevalent in Alzheimer's disease (AD), affecting individuals during its early stages. We investigated associations between subjective sleep measures and cerebrospinal fluid (CSF) biomarkers of AD in adults with mild cognitive symptoms from the European Prevention of Alzheimer's Dementia Longitudinal Cohort Study, considering the influence of memory performance. A total of 442 participants aged >50 years with a Clinical Dementia Rating (CDR) score of 0.5 completed the Pittsburgh Sleep Quality Index questionnaire and underwent neuropsychological assessment, magnetic resonance imaging acquisition, and CSF sampling. We analysed the relationship of sleep quality with CSF AD biomarkers and cognitive performance in separated multivariate linear regression models, adjusting for covariates. Poorer cross-sectional sleep quality was associated with lower CSF levels of phosphorylated tau and total tau alongside better immediate and delayed memory performance. After adjustment for delayed memory scores, associations between CSF biomarkers and sleep quality became non-significant, and further analysis revealed that memory performance mediated this relationship. In post hoc analyses, poorer subjective sleep quality was associated with lesser hippocampal atrophy, with memory performance also mediating this association. In conclusion, worse subjective sleep quality is associated with less altered AD biomarkers in adults with mild cognitive symptoms (CDR score 0.5). These results could be explained by a systematic recall bias affecting subjective sleep assessment in individuals with incipient memory impairment. Caution should therefore be exercised when interpreting subjective sleep quality measures in memory-impaired populations, emphasising the importance of complementing subjective measures with objective assessments.

13.
medRxiv ; 2023 Oct 05.
Article En | MEDLINE | ID: mdl-37873312

INTRODUCTION: Detection of Alzheimer's disease (AD) pathophysiology among cognitively unimpaired individuals and those experiencing subjective cognitive decline (SCD) remains challenging. Plasma p-tau217 is one of the most promising of the emerging biomarkers for AD. However, accessible methods are limited. METHODS: We employed a novel p-tau217 immunoassay (UGOT p-tau217) in four independent cohorts (n=308) including a cerebrospinal fluid (CSF) biomarker-classified cohort (Discovery), two cohorts consisting mostly of cognitively unimpaired participants (MYHAT and Pittsburgh), and a population-based cohort of individuals with SCD (ß-AARC). RESULTS: UGOT p-tau217 showed high accuracy (AUC= 0.80-0.91) identifying Aß pathology, determined either by Aß positron emission tomography or CSF Aß42/40 ratio. In individuals experiencing SCD, UGOT p-tau217 showed high accuracy identifying those with a positive CSF Aß42/40 ratio (AUC= 0.91). DISCUSSION: UGOT p-tau217 can be an easily accessible and efficient way to screen and monitor patients with suspected AD pathophysiology, even in the early stages of the continuum.

14.
Lancet Healthy Longev ; 4(9): e487-e498, 2023 09.
Article En | MEDLINE | ID: mdl-37659430

BACKGROUND: Cardiovascular disease and dementia often coexist at advanced stages. Yet, longitudinal studies examining the interplay between atherosclerosis and its risk factors on brain health in midlife are scarce. We aimed to characterise the longitudinal associations between cerebral glucose metabolism, subclinical atherosclerosis, and cardiovascular risk factors in middle-aged asymptomatic individuals. METHODS: The Progression of Early Subclinical Atherosclerosis (PESA) study is a Spanish longitudinal observational cohort study of 4184 asymptomatic individuals aged 40-54 years (NCT01410318). Participants with subclinical atherosclerosis underwent longitudinal cerebral [18F]fluorodeoxyglucose ([18F]FDG)-PET, and annual percentage change in [18F]FDG uptake was assessed (primary outcome). Cardiovascular risk was quantified with SCORE2 and subclinical atherosclerosis with three-dimensional vascular ultrasound (exposures). Multivariate regression and linear mixed effects models were used to assess associations between outcomes and exposures. Additionally, blood-based biomarkers of neuropathology were quantified and mediation analyses were performed. Secondary analyses were corrected for multiple comparisons using the false discovery rate (FDR) approach. FINDINGS: This longitudinal study included a PESA subcohort of 370 participants (median age at baseline 49·8 years [IQR 46·1-52·2]; 309 [84%] men, 61 [16%] women; median follow-up 4·7 years [IQR 4·2-5·2]). Baseline scans took place between March 6, 2013, and Jan 21, 2015, and follow-up scans between Nov 24, 2017, and Aug 7, 2019. Persistent high risk of cardiovascular disease was associated with an accelerated decline of cortical [18F]FDG uptake compared with low risk (ß=-0·008 [95% CI -0·013 to -0·002]; pFDR=0·040), with plasma neurofilament light chain, a marker of neurodegeneration, mediating this association by 20% (ß=0·198 [0·008 to 0·740]; pFDR=0·050). Moreover, progression of subclinical carotid atherosclerosis was associated with an additional decline in [18F]FDG uptake in Alzheimer's disease brain regions, not explained by cardiovascular risk (ß=-0·269 [95% CI -0·509 to -0·027]; p=0·029). INTERPRETATION: Middle-aged asymptomatic individuals with persistent high risk of cardiovascular disease and subclinical carotid atherosclerosis already present brain metabolic decline, suggesting that maintenance of cardiovascular health during midlife could contribute to reductions in neurodegenerative disease burden later in life. FUNDING: Spanish Ministry of Science and Innovation, Instituto de Salud Carlos III, Santander Bank, Pro-CNIC Foundation, BrightFocus Foundation, BBVA Foundation, "la Caixa" Foundation.


Atherosclerosis , Cardiovascular Diseases , Carotid Artery Diseases , Neurodegenerative Diseases , Male , Humans , Female , Middle Aged , Cardiovascular Diseases/diagnostic imaging , Cardiovascular Diseases/epidemiology , Fluorodeoxyglucose F18 , Longitudinal Studies , Prospective Studies , Risk Factors , Atherosclerosis/epidemiology , Heart Disease Risk Factors , Glucose
15.
Front Neurol ; 14: 1175922, 2023.
Article En | MEDLINE | ID: mdl-37602259

Neurodegenerative diseases are one of the most important contributors to morbidity and mortality in the elderly. In Europe, over 14 million people are currently living with dementia, at a cost of over 400 billion EUR annually. Recent advances in diagnostics and approval for new pharmaceutical treatments for Alzheimer's disease (AD), the most common etiology of dementia, heralds the beginning of precision medicine in this field. However, their implementation will challenge an already over-burdened healthcare systems. There is a need for innovative digital solutions that can drive the related clinical pathways and optimize and personalize care delivery. Public-private partnerships are ideal vehicles to tackle these challenges. Here we describe the Innovative Health Initiative (IHI) public-private partnership project PROMINENT that has been initiated by connecting leading dementia researchers, medical professionals, dementia patients and their care partners with the latest innovative health technologies using a precision medicine based digital platform. The project builds upon the knowledge and already implemented digital tools from several collaborative initiatives that address new models for early detection, diagnosis, and monitoring of AD and other neurodegenerative disorders. The project aims to provide support to improvement efforts to each aspect of the care pathway including diagnosis, prognosis, treatment, and data collection for real world evidence and cost effectiveness studies. Ultimately the PROMINENT project is expected to lead to cost-effective care and improved health outcomes.

16.
J Alzheimers Dis ; 95(1): 237-249, 2023.
Article En | MEDLINE | ID: mdl-37483000

BACKGROUND: Conventional neuropsychological norms likely include cognitively unimpaired (CU) individuals with preclinical Alzheimer's disease (AD) pathology (amyloid-ß, tau, and neurodegeneration) since they are based on cohorts without AD biomarkers data. Due to this limitation, population-based norms would lack sensitivity for detecting subtle cognitive decline due to AD, the transitional stage between healthy cognition and mild cognitive impairment. We have recently published norms for memory tests in individuals with normal cerebrospinal fluid (CSF) AD biomarker levels. OBJECTIVE: The aim of the present study was to provide further AD biomarker-based cognitive references covering attentional, executive function, linguistic, and visual processing tests. METHODS: We analyzed 248 CU individuals aged between 50-70 years old with normal CSF Aß, p-tau, and neurodegeneration (t-tau) biomarker levels. The tests included were the Trail Making Test (TMT), Semantic Fluency Test, Digit and Symbol Span, Coding, Matrix Reasoning, Judgement of Line Orientation and Visual Puzzles. Normative data were developed based on regression models adjusted for age, education, and sex when needed. We present equations to calculate z-scores, the corresponding normative percentile tables, and online calculators. RESULTS: Age, education, and sex were associated with performance in all tests, except education for the TMT-A, and sex for the TMT-B, Coding, and Semantic Fluency. Cut-offs derived from the current biomarker-based reference data were higher and more sensitive than standard norms. CONCLUSION: We developed reference data obtained from individuals with evidence of non-pathologic AD biomarker levels that may improve the objective characterization of subtle cognitive decline in preclinical AD.


Alzheimer Disease , Cognitive Dysfunction , Humans , Aged , Alzheimer Disease/pathology , tau Proteins/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Cognitive Dysfunction/psychology , Visual Perception , Biomarkers/cerebrospinal fluid , Semantics , Neuropsychological Tests , Peptide Fragments/cerebrospinal fluid
17.
Alzheimers Dement ; 19(12): 5371-5386, 2023 Dec.
Article En | MEDLINE | ID: mdl-37194734

INTRODUCTION: Poor sleep quality is associated with cognitive outcomes in Alzheimer's disease (AD). We analyzed the associations between self-reported sleep quality and brain structure and function in cognitively unimpaired (CU) individuals. METHODS: CU adults (N = 339) underwent structural magnetic resonance imaging, lumbar puncture, and the Pittsburgh Sleep Quality Index (PSQI) questionnaire. A subset (N = 295) performed [18F] fluorodeoxyglucose positron emission tomography scans. Voxel-wise associations with gray matter volumes (GMv) and cerebral glucose metabolism (CMRGlu) were performed including interactions with cerebrospinal fluid (CSF) AD biomarkers status. RESULTS: Poorer sleep quality was associated with lower GMv and CMRGlu in the orbitofrontal and cingulate cortices independently of AD pathology. Self-reported sleep quality interacted with altered core AD CSF biomarkers in brain areas known to be affected in preclinical AD stages. DISCUSSION: Poor sleep quality may impact brain structure and function independently from AD pathology. Alternatively, AD-related neurodegeneration in areas involved in sleep-wake regulation may induce or worsen sleep disturbances. Highlights Poor sleep impacts brain structure and function independent of Alzheimer's disease (AD) pathology. Poor sleep exacerbates brain changes observed in preclinical AD. Sleep is an appealing therapeutic strategy for preventing AD.


Alzheimer Disease , Cognitive Dysfunction , Adult , Humans , Alzheimer Disease/pathology , Brain/pathology , Gray Matter/pathology , Magnetic Resonance Imaging , Positron-Emission Tomography/methods , Sleep , Biomarkers/cerebrospinal fluid , Amyloid beta-Peptides/metabolism , Cognitive Dysfunction/metabolism
18.
Elife ; 122023 04 17.
Article En | MEDLINE | ID: mdl-37067031

Brain-age can be inferred from structural neuroimaging and compared to chronological age (brain-age delta) as a marker of biological brain aging. Accelerated aging has been found in neurodegenerative disorders like Alzheimer's disease (AD), but its validation against markers of neurodegeneration and AD is lacking. Here, imaging-derived measures from the UK Biobank dataset (N=22,661) were used to predict brain-age in 2,314 cognitively unimpaired (CU) individuals at higher risk of AD and mild cognitive impaired (MCI) patients from four independent cohorts with available biomarker data: ALFA+, ADNI, EPAD, and OASIS. Brain-age delta was associated with abnormal amyloid-ß, more advanced stages (AT) of AD pathology and APOE-ε4 status. Brain-age delta was positively associated with plasma neurofilament light, a marker of neurodegeneration, and sex differences in the brain effects of this marker were found. These results validate brain-age delta as a non-invasive marker of biological brain aging in non-demented individuals with abnormal levels of biomarkers of AD and axonal injury.


Alzheimer Disease , Humans , Male , Female , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Brain/metabolism , Amyloid beta-Peptides/metabolism , Neuroimaging/methods , Biomarkers , Machine Learning
19.
J Alzheimers Dis ; 92(4): 1303-1321, 2023.
Article En | MEDLINE | ID: mdl-37038810

BACKGROUND: Neuropsychological assessments are essential to define the cognitive profile and contribute to the diagnosis of Alzheimer's disease (AD). The progress in knowledge about the pathophysiological process of the disease has allowed conceptualizing AD through biomarkers as a biological continuum that encompasses different clinical stages. OBJECTIVE: To explore the association between cerebrospinal fluid (CSF) biomarkers of AD and cognition using the NEURONORMA battery, in a sample of cognitively unimpaired (CU), mild cognitive impaired (MCI), and mild dementia of the Alzheimer type (DAT) subjects, and to characterize the cognitive profiles in MCI subjects classified by A/T/N system. METHODS: 42 CU, 35 MCI, and 35 mild DAT were assessed using the NEURONORMA battery. Core AD biomarkers [amyloid-ß42 (Aß42) peptide, total tau (t-tau), and phosphorylated tau 181 (p-tau181)] proteins were measured in CSF. Correlation coefficients, multivariate regression, and effect sizes were calculated. We explored the age- and education-adjusted cognitive profiles by A/T/N variants within the MCI group. RESULTS: Cognitive outcomes were directly associated with CSF Aß42 and inversely with CSF tau measures. We found differences in both biomarkers and cognitive outcomes comparing all pairs except for CSF measures between cognitively impaired groups. The highest effect size was in memory tasks and biomarkers ratios. Lower performances were in memory and executive domains in MCI subjects with AD pathology (A+T+N±) compared to those with normal levels of AD biomarkers (A- T- N). CONCLUSION: This study provides further evidence of the validity of Spanish NEURONORMA cognitive battery to characterize cognitive impairment in the AD pathological continuum.


Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/pathology , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Cognition , Cognitive Dysfunction/psychology , Disease Progression , Peptide Fragments/cerebrospinal fluid , tau Proteins/cerebrospinal fluid
20.
EJNMMI Res ; 13(1): 18, 2023 Mar 01.
Article En | MEDLINE | ID: mdl-36856866

PURPOSE: To determine whether the APOE-ε4 allele modulates the relationship between regional ß-amyloid (Aß) accumulation and cognitive change in middle-aged cognitively unimpaired (CU) participants. METHODS: The 352 CU participants (mean aged 61.1 [4.7] years) included completed two cognitive assessments (average interval 3.34 years), underwent [18F]flutemetamol Aß positron emission tomography (PET), T1w magnetic resonance imaging (MRI), as well as APOE genotyping. Global and regional Aß PET positivity was assessed across five regions-of-interest by visual reading (VR) and regional Centiloids. Linear regression models were developed to examine the interaction between regional and global Aß PET positivity and APOE-ε4 status on longitudinal cognitive change assessed with the Preclinical Alzheimer's Cognitive Composite (PACC), episodic memory, and executive function, after controlling for age, sex, education, cognitive baseline scores, and hippocampal volume. RESULTS: In total, 57 participants (16.2%) were VR+ of whom 41 (71.9%) were APOE-ε4 carriers. No significant APOE-ε4*global Aß PET interactions were associated with cognitive change for any cognitive test. However, APOE-ε4 carriers who were VR+ in temporal areas (n = 19 [9.81%], p = 0.04) and in the striatum (n = 8 [4.14%], p = 0.01) exhibited a higher decline in the PACC. The temporal areas findings were replicated when regional PET positivity was determined with Centiloid values. Regionally, VR+ in the striatum was associated with higher memory decline. As for executive function, interactions between APOE-ε4 and regional VR+ were found in temporal and parietal regions, and in the striatum. CONCLUSION: CU APOE-ε4 carriers with a positive Aß PET VR in regions known to accumulate amyloid at later stages of the Alzheimer's disease (AD) continuum exhibited a steeper cognitive decline. This work supports the contention that regional VR of Aß PET might convey prognostic information about future cognitive decline in individuals at higher risk of developing AD. CLINICALTRIALS: gov Identifier: NCT02485730. Registered 20 June 2015 https://clinicaltrials.gov/ct2/show/NCT02485730 and ClinicalTrials.gov Identifier:NCT02685969. Registered 19 February 2016 https://clinicaltrials.gov/ct2/show/NCT02685969 .

...